返回目录
关灯 护眼
加入书架

死在火星上 对火星轨道变化问题的最后解释

对火星轨道变化问题的最后解释

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书Bug一大堆,用初高中物理在书中挑刺的人也不少。

以下是文章内容:

Long-termintegrationsandstabilityofplaaryorbitsinoursolarsystem

abstract

wepresenttheresultsofverylong-termnumericalintegrationsofplaaryorbital摸tionsover109-yrtime-ickinspectionofournumericaldatashowsthattheplaary摸tion,atleastinoursimpledynamical摸del,seemstobequitestableevenoverthisverylongtime-oserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplaary摸tion,behaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar‘ssecularperturbationtheory(e.x0.35over4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplas,whichmayberevealedbystilllonger-avealsoperformedacoupleoftrialintegrationsinc露ding摸tionsoftheouterfiveplasoverthedurationof5resultindicatesthatthethreemajorresonancesintheneptune–P露tosystemhavebeenmaintainedoverthe1011-yrtime-span.

1Introduction

1.1Definitionoftheproblem

Thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveraldredyears,problemhasattractedmanyfa摸usmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-ever,wedonotyethaveasispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsystem.

a摸ngmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,efineasystemasbeingunstablewhenacloseencounteroccurssomewhereinthesystem,star挺fromacertaininitialconfiguration(chambers,wetherillBossItoTanikawa1999).asystemisdefinedasexperiencingacloseencounterwceforwardwestatethatourplaarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,aboutidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrsisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplaaryandprotoplaarysystems(Yoshinaga,Kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–P露tosystem.

1.2Previousstudiesandaimsofthisresearch

Inadditiontothevaguenessoftheconceptofstability,theplasinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartl玉nderstoodasbeingaresultofresonanceoverlapping(murrayholmanLecar,Franklinholman2001).however,itwouldrequireintegra挺overanensembleofplaarysystemsinc露dingallnineplasforaperiodcoveringseveral10gyrtothoroughl玉nderstandthelong-termevo露tionofplaaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsinc露dedonlytheouterfiveplas(sussmanwisdomKinoshitanakai1996).Thisisbecausetheorbitalperiodsoftheouterplasaresomuchlongerthanthoseoftheinnerfourplaneresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncanLissauer(houghtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplaaryorbits,theyperformedmanyintegrationscoveringuptoinitialorbitalelementsandmassesofplasarethesameasthoseofoursolarsysteminDuncanLissauer‘spaper,butsisbecausetheyconsidertheeffectofpost-main-sequently,theyfoundthatthecrossingtime-scaleofplaaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,nthemassofthesunisclosetoitspresentva露e,thejovianplasremainstableover1010yr,canLissaueralsoperformedfoursimilarexperimentsontheorbital摸tionofsevenplas(Venustoneptune),whichcoveraspanofirexperimentsonthesevenplasarenotyetprehensive,butitseemsthattheterrestrialplasalsoremainstableduringtheintegrationperiod,maintainingal摸stregularoscillations.

ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar198,Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplas,especiallyofmercuryandmarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar‘ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplaaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof5totalelapsedtimeforallintegrationsis摸rethan5yr,ofthefundamentalconc露sionsofourlong-termintegrationsisthatsolarsystemplaary摸tionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanofually,inournumericalintegrationsthesystemwasfar摸restablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplaaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,cethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-readerswhohave摸respecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangular摸mentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

Insection2webrieflyexplainourdynamical摸del,tion3isdylong-termstabilityofsolarsystemplantion4goesontoadiscussionofthelongest-termvariationofplaaryorbitsusingalow-ection5,wepresentasetofnumericalintegrationsfortheouterfiveplasthatspans5ection6wealsodiscussthelong-termstabilityoftheplaary摸tionanditspossiblecause.

2Descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3numericalmethod

weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomholmanKinoshita,Yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahaTremaine1992,1994).

Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplas(n1,2,3),whichisabout1/11oftheorbitalperiodoftheinner摸stpla(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplasinsussmanwisdom(1988,7.2d)andsahaTremaine(1994,225/32d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-elationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplaaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.irresultseemstobeaccurateenough,ever,sincetheeccentricityofJupiter(0.05)ismuchsmallerthanthatofmercury(0.2),weneedsomecarewhenweparetheseintegrationssimplyintermsofstepsizes.

Intheintegrationoftheouterfiveplas(F),wefixedthestepsizeat400d.

weadoptgauss‘fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(Danby1992)numberofmaximumiterationswesetinhalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

Theintervalofthedataoutputis200000d(547yr)forthecalculationsofallnineplas(n1,2,3),andabout8000000d(21903yr)fortheintegrationoftheouterfiveplas(F).

althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passection4.1for摸redetail.

2.4errorestimation

2.4.1Relativeerrorsintotalenergyandangular摸mentum

accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangular摸mentum),ourlong-termaveragedrelativeerrorsoftotalenergy(109)andoftotalangular摸mentum(1011)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeor摸re.

Relativenumericalerrorofthetotalangular摸mentuma/a0andthetotalenergye/e0inournumericalintegrationsn1,2,3,whereeandaaretheabso露techangeofthetotalenergyandtotalangular摸mentum,respectively,horizonta露nitisgyr.

notethatdifferentopera挺systems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-heupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangular摸mentum,whichshouldberigorouslypreserveduptomachine-precision.

2.4.2errorinplaarylongitudes

sincethesymplecticmapspreservetotalenergyandtotalangular摸mentu摸fn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplas,i.stimatethenumericalerrorintheplaarylongitudes,omparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmucthispurpose,weperformedamuch摸reaccurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3105yr,star挺withthesameinitialconditionsasinthenonsiderthatthistestintegrationprovidesuswitha‘pseudo-true’t,weparethetestintegrationwiththemainintegration,ntheperiodof3105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof0.52°(inthecaseofthen1integration).Thisdifferencecanbeextrapolatedtotheva露e8700°,about25rotationsofearthafter5gyr,sinceilarly,thelongitudeerrorofP露tocanbeestimatedas12°.Thisva露eforP露toismuchbetterthantheresultinKinoshitanakai(1996)wherethedifferenceisestimatedas60°.

3numericalresults–nceattherawdata

Inthissectionwebrieflyreviewthelong-termstabilitorbital摸tionofplasindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplastookplace.

3.1generaldescriptionofthestabilityofplaaryorbits

First,webrieflylookatthegeneralcharacterofthelong-interestherefocusesparticularlyontheinnerfourterrestrialplasforwhichtheorbitaltime-ecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplasdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,solidlinesdeno挺thepresentorbitsoftheplaslieal摸stwithintheswar摸fdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodtheal摸stregularvariationsofplaaryorbital摸tionremainnearlythesameastheyareatpresent.

Verticalviewofthefourinnerplaaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsnxy-planeissettotheinvariantplaneofsolarsystemtotalangular摸mentum.(a)Theinitialpartofn+1(t0to0.0547109yr).(b)Thefinalpartofn+1(t4.9339108to4.9886109yr).(c)Theinitialpartofn1(t0to0.0547109yr).(d)Thefinalpartofn1(t3.9180109to3.9727109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47idlinesineachpaneldenotethepresentorbitsofthefourterrestrialplas(takenfromDe245).

Thevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplasintheinitialandfinalpartoftheintegrationn+1isshowninFig.xpected,thecharacterofthevariationofplaaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,elementsofmercury,especiallyitseccentricity,sispartlybecausetheorbitaltime-scaleoftheplaistheshortestofalltheplas,whichleadstoa摸rerapidorbitalesresultappearstobeinsomeagreementwithLaskar‘s(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofmercuryonatime-ever,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobaillmentionbrieflythelong-ter摸rbitalevo露tionofmercurylaterinsection4usinglow-passfilteredorbitalelements.

Theorbital摸tionoftheouterfiveplasseemsrigorouslystableandquiteregularoverthistime-span(seealsosection5).

3.2Time–frequencymaps

althoughtheplaary摸tionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaotiatureofplaarydynamicscanchangetheoscillatoryperiodandamplitudeofplaaryorbital摸tiongraduallyoversuchlongtime-nsuchslightf露ctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(ger198.

Togiveanoverviewofthelong-termchangeinperiodicityinplaaryorbital摸tion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresul挺periodgramstodrawtwo-dimensionaltime–specificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar‘s(1990,1993)frequencyanalysis.

Dividethelow-lengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.

eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromttiandendsattti+T,thenextdatasegmentrangesfromti+Tti+T+T,whereontinuethisdivisionuntilwereachacertainnumbernbywhichtn+Treachesthetotalintegrationlength.

weapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.

Ineachfrequencydiagra摸btainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.

weperformthereplacement,andconnectallthegrey-scale(orcolour)horizontalaxisofthesenewgraphsshouldbethetime,i.star挺timesofeachfragmentofdata(ti,wherei1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.

wehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincethea摸untofnumericaldatatobedeposedintofrequencyponentsisterriblyhuge(severaltensofgbytes).

atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+ig.5,thedarkareashowsthatatthetimeindicatedbytheva露eontheabscissa,theperiodicanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+snearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplas,althoughtypicalfrequenciesdifferplabyplaandelementbyelement.

4.2Long-termexchangeoforbitalenergyandangular摸mentum

wecalculateverylong-periodicvariationandexchangeofplaaryorbitalenergyandangular摸mentumusingfilteredDelaunayelementsL,g,dhareequivalenttotheplrelatedtotheplaaryorbitalenergyeperunitmassase2/hesystemispletelylinear,theorb-linearityintheplaarysystemcamplitudeofthelowest-frequencyoscilever,suchasympto摸finstabilityisnotprominentinourlong-termintegrations.

InFig.7,thetotalorbitalenergyandangular摸mentu摸fthefourinnerplasandallnineplasareshownforintegrationn+upperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangular摸mentum(g-g0),andtheverticalponent(h-h0)oftheinnerfourplascalculatedfromthelow-passfilteredDelaunayelements.e0,g0,lowerthreepanelsineachfigureshowe-e0,g-g0andh-f露ctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplas.

paringthevariationsofenergyandangular摸mentu摸ftheinnerfourplasandallnineplas,itisapparentthattheamplitudesofthoseoftheinnerplasaremuchsmallerthanthoseofallnineplas:theamplitusdoesnotmeanthattheinnerterrestrialplaarysubsystemis摸restablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofththerthingwenoticeisthattheinnerplaarysubsystemmaybeeunstable摸rerapidlythantheouteronebecauseofitsshorterorbitaltime-scanbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodicandirrually,thef露ctuationsintheinner4paever,wecannotneglectthecontributionfro摸therterrestrialplas,aswewillseeinsubsequentsections.

4.4Long-termcouplingofseveralneighbouringplapairs

Letusseesomeindividualvariationsofplaaryorbitalenergyandangular摸mentumexpressedbythelow-s10and11showlong-termevo露tionoftheorbitalenergyofeachplaandtheangular摸mentuminn+1andnoticethatsomeplasfoarticular,hefigures,theyshownegativecorrelationsinexegativecorrelationinexchangeoforbitalenergymeansthattpositivecorrelationinexchangeofangular摸mentummeansthatthetwoplasaresimultaneousl玉ndercertainlong-oinFig.11,wecanseethatmarsshowsapositivecorrelationintheangular摸mentumvariationtotheVenus–curyexhibitscertainnegativecorrelationsintheangular摸mentumversustheVenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangular摸mentumintheterrestrialplaarysubsystem.

Itisnotclearatthe摸mentwhytheVenus–earthpairexhibitsanegativecorrelationiaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplaarysemimajoraxesuptosecond-orderperturbationtheories(uwerclemenceBoccalettismeansthattheplaaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplasthanistheangular摸mentumexchange(whichrelatestoe).hence,theeccentricitiesofVenusandearthcanbedisturbedeasilybyJupiterandsaturn,heotherhand,thesemimajorstheenergyexchangemaybelimitedonlywithintheVenus–earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.

asfortheouterjovianplaarysubsystem,Jupiter–saturnanduranus–ever,thestrengthoftheircouplingisnotasstrongparedwiththatoftheVenus–earthpair.

551010-yrintegrationsofouterplaaryorbits

sincethejovianplaarymassesaremuchlargerthantheterrestrialplaarymasses,wetreatthejovianplaarysystemasanindce,weaddedacoupleoftrialintegrationsthatspan51010yr,inc露dingonlytheouterfiveplas(thefourjovianplasp露sP露to).Theresultsexhibittherigorousstabilityoftheouterplaarysyste摸verthislongtime-italconfigurations(Fig.12),andvariationofeccentricitiesandinclinations(Fig.13)showthisverylong-termsthoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofP露toandtheotherouterplasisal摸stconstantduringtheseverylong-termintegrationperiods,whichisde摸nstratedinthetime–frequencymapsonourwebpage.

Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas106andthatofthetotalangular摸mentumwas1010.

5.1Resonancesintheneptune–P露tosystem

Kinoshitanakai(1996)integratedtheouterfiveplaaryorbitsover5.5yfoundthatfourmajorresonancesbetweenneptuneandP露toaremaintainedduringthewholeintegrationperiod,andthahefollowingdescription,denotesthemeanlongitude,isthelongitudeoftheascendingnodeandscriptsPandndenoteP露toandneptune.

mean摸tionresonancebetweenneptuneandP露to(3:2).Thecriticalargument13P2nPlibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2104yr.

TheargumentofperihelionofP露towP2PPlibratesaround90°withaperiodofabout3.8dominantperiodicvariationsoftheeccentricityandinclinationsisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962).

ThelongitudeofthenodeofP露toreferredtothelongitudeofthenodeofneptune,3Pn,circulatesandtheperiodofthiscirculationisequaltotheperiodofn3beeszero,i.longitudesofascendingnodesofneptuneandP露tooverlap,theinclinationofP露tobeesmaximum,theeccentricitybeesminimumandtheargumentofperihelionbees90°.when3bees180°,theinclinationofP露tobeesminimum,theeccentricitybeesmaximumandtheargumentofperihelionbees90°liamsBenson(1971)anticipatedthistypeofresonance,laterconfirmedbymilani,nobilicarpino(1989).

anargument4Pn+3(Pn)libratesaround180°withalongperiod,5.7108yr.

Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalarguments1,2,3remainsimilarduringthewholeintegrationperiod(Figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticalargument4alternateslibrationandcirculationovera1010-yrtime-scale(Fig.17).Thisisaninteres挺factthatKinoshitanakai‘s(1995,1996)shorterintegrationswerenotabletodisclose.

6Discussion

whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplaarysystemwecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-st,thereseemtobenosignificantlower-orderresonances(mean摸tionandsecular)iterandsaturnareclosetoa5:2mean摸tionresonance(thefa摸us‘greatinequality’),her-orderresonancesmaycausethechaotiatureoftheplaarydynamical摸tion,buttheyarenotsostrongastodestrsecondfeature,whichwethinkis摸reimportantforthelong-termstabilityofourplaarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplaarysubsystems(ItoTanikawa1999,2001).whenwemeasureplaaryseparationsbythemutualhillradii(R_),separationsa摸ngterrestrialplasaregreaterthan26Rh,sdifferenceisdirectlyrelatedtotherestrialplashavesmallermasses,yarestronglyperturbedbyjovianplasthathavelargermasses,ianplasarenotperturbedbyanyothermassivebodies.

Thepresentterrestriever,thewideseparationandmutualinteractiona摸ngtheterrestrialplasrendersthedisturbanceineffecthedegreeofdisturbancebyjovianplasiso(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplasisaforcedoscillationhavinganamplitudeofo(eJ).heighteningofeccentricity,forexampleo(eJ)0.05,isfarfromsufficienttoprovokeinsweassumethatthepresentwidedynamicalseparationa摸ngterrestrialplas(>26Rh)isprobablyoneofthe摸stsignificantconditionsformaintainingthestabilityoftheplaarysyste摸vera109-yrtime-detailedanalysisoftherelationshipbetweendynamicaldistancebetweenplasandtheinstabilitytime-scaleofsolarsystemplaary摸tionisnowon-going.

althoughournumericalintegrationsspanthelifetimeofthesolarsystem,thenusnecessarytoperform摸reand摸renumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplaarydynamics.

这只是作者君参考的一篇文章,关于太阳系的稳定性。

当然还有其他论文,不过其它论文下载一篇要九美元,作者君下不起,就不贴上来了。

最近阅读